US 20140303370A1 ### (19) United States # (12) Patent Application Publication KOTTAS et al. (10) Pub. No.: US 2014/0303370 A1 (43) **Pub. Date:** Oct. 9, 2014 #### (54) METHOD OF MAKING ORGANIC ELECTROLUMINESCENT MATERIALS - (71) Applicant: **Universal Display Corporation**, Ewing, NJ (US) - (72) Inventors: Gregg KOTTAS, Ewing, NJ (US); Chuanjun Xia, Lawrenceville, NJ (US); Zeinab Elshenawy, Holland, PA (US); Nasrin Ansari, Monmouth Junction, NJ (US) - (21) Appl. No.: 14/310,606(22) Filed: Jun. 20, 2014 ### Related U.S. Application Data (62) Division of application No. 13/111,555, filed on May 19, 2011, now Pat. No. 8,795,850. #### Publication Classification (51) **Int. Cl. H01L 51/00** (2006.01) #### (57) ABSTRACT A method of making ligands for producing novel heteroleptic iridium complexes is provided. The method includes reacting the condensation product of an aryl 1,2-diamine and an aryl aldehyde with manganese dioxide in a solvent. The novel iridium complexes produced using the ligands are useful compounds in OLED devices. FIGURE 1 FIGURE 2 $$\begin{bmatrix} R_1 \\ R_5 \\ R_2 \end{bmatrix} \begin{bmatrix} R_1 \\ R_2 \end{bmatrix} \begin{bmatrix} R_2 \\ R_3 \end{bmatrix} \begin{bmatrix} R_3 \\ R_4 \end{bmatrix}$$ Formula 1 FIGURE 3 # METHOD OF MAKING ORGANIC ELECTROLUMINESCENT MATERIALS # CROSS-REFERENCE TO RELATED APPLICATIONS **[0001]** This application is a divisional of U.S. patent application Ser. No. 13/111,555, filed May 19, 2011, the entire content of which is incorporated herein by reference. #### PARTIES TO A JOINT RESEARCH AGREEMENT [0002] The claimed invention was made by, on behalf of, and/or in connection with one or more of the following parties to a joint university corporation research agreement: Regents of the University of Michigan, Princeton University, The University of Southern California, and the Universal Display Corporation. The agreement was in effect on and before the date the claimed invention was made, and the claimed invention was made as a result of activities undertaken within the scope of the agreement. #### FIELD OF THE INVENTION [0003] The present invention relates to compounds useful for incorporation into OLEDs, specifically heteroleptic iridium complexes, and methods of making phenylbenzimidazole ligands. #### BACKGROUND [0004] Opto-electronic devices that make use of organic materials are becoming increasingly desirable for a number of reasons. Many of the materials used to make such devices are relatively inexpensive, so organic opto-electronic devices have the potential for cost advantages over inorganic devices. In addition, the inherent properties of organic materials, such as their flexibility, may make them well suited for particular applications such as fabrication on a flexible substrate. Examples of organic opto-electronic devices include organic light emitting devices (OLEDs), organic phototransistors, organic photovoltaic cells, and organic photodetectors. For OLEDs, the organic materials may have performance advantages over conventional materials. For example, the wavelength at which an organic emissive layer emits light may generally be readily tuned with appropriate dopants. [0005] OLEDs make use of thin organic films that emit light when voltage is applied across the device. OLEDs are becoming an increasingly interesting technology for use in applications such as flat panel displays, illumination, and backlighting. Several OLED materials and configurations are described in U.S. Pat. Nos. 5,844,363, 6,303,238, and 5,707,745, which are incorporated herein by reference in their entirety. [0006] One application for phosphorescent emissive molecules is a full color display. Industry standards for such a display call for pixels adapted to emit particular colors, referred to as "saturated" colors. In particular, these standards call for saturated red, green, and blue pixels. Color may be measured using CIE coordinates, which are well known to the art. [0007] One example of a green emissive molecule is tris(2-phenylpyridine)iridium, denoted Ir(ppy)₃, which has the following structure: [0008] In this, and later figures herein, we depict the dative bond from nitrogen to metal (here, Ir) as a straight line. [0009] As used herein, the term "organic" includes polymeric materials as well as small molecule organic materials that may be used to fabricate organic opto-electronic devices. "Small molecule" refers to any organic material that is not a polymer, and "small molecules" may actually be quite large. Small molecules may include repeat units in some circumstances. For example, using a long chain alkyl group as a substituent does not remove a molecule from the "small molecule" class. Small molecules may also be incorporated into polymers, for example as a pendent group on a polymer backbone or as a part of the backbone. Small molecules may also serve as the core moiety of a dendrimer, which consists of a series of chemical shells built on the core moiety. The core moiety of a dendrimer may be a fluorescent or phosphorescent small molecule emitter. A dendrimer may be a "small molecule," and it is believed that all dendrimers currently used in the field of OLEDs are small molecules. [0010] As used herein, "top" means furthest away from the substrate, while "bottom" means closest to the substrate. Where a first layer is described as "disposed over" a second layer, the first layer is disposed further away from substrate. There may be other layers between the first and second layer, unless it is specified that the first layer is "in contact with" the second layer. For example, a cathode may be described as "disposed over" an anode, even though there are various organic layers in between. [0011] As used herein, "solution processible" means capable of being dissolved, dispersed, or transported in and/ or deposited from a liquid medium, either in solution or suspension form. [0012] A ligand may be referred to as "photoactive" when it is believed that the ligand directly contributes to the photoactive properties of an emissive material. A ligand may be referred to as "ancillary" when it is believed that the ligand does not contribute to the photoactive properties of an emissive material, although an ancillary ligand may alter the properties of a photoactive ligand. [0013] As used herein, and as would be generally understood by one skilled in the art, a first "Highest Occupied Molecular Orbital" (HOMO) or "Lowest Unoccupied Molecular Orbital" (LUMO) energy level is "greater than" or "higher than" a second HOMO or LUMO energy level if the first energy level is closer to the vacuum energy level. Since ionization potentials (IP) are measured as a negative energy relative to a vacuum level, a higher HOMO energy level corresponds to an IP having a smaller absolute value (an IP that is less negative). Similarly, a higher LUMO energy level corresponds to an electron affinity (EA) having a smaller absolute value (an EA that is less negative). On a conventional energy level diagram, with the vacuum level at the top, the LUMO energy level of a material is higher than the HOMO energy level of the same material. A "higher" HOMO or LUMO energy level appears closer to the top of such a diagram than a "lower" HOMO or LUMO energy level. [0014] As used herein, and as would be generally understood by one skilled in the art, a first work function is "greater than" or "higher than" a second work function if the first work function has a higher absolute value. Because work functions are generally measured as negative numbers relative to vacuum level, this means that a "higher" work function is more negative. On a conventional energy level diagram, with the vacuum level at the top, a "higher" work function is illustrated as further away from the vacuum level in the downward direction. Thus, the definitions of HOMO and LUMO energy levels follow a different convention than work functions. [0015] More details on OLEDs, and the definitions described above, can be found in U.S. Pat. No. 7,279,704, which is incorporated herein by reference in its entirety. #### SUMMARY OF THE INVENTION [0016] A compound comprising a heteroleptic iridium complex having the formula: Formula I $$\begin{bmatrix} R_1 \\ R_2 \end{bmatrix}$$ $$\begin{bmatrix} R_3 \\ N \end{bmatrix}$$ $$\begin{bmatrix} R_3 \\ N \end{bmatrix}$$ $$\begin{bmatrix} R_3 \\ N \end{bmatrix}$$ $$\begin{bmatrix} R_4 \\ N \end{bmatrix}$$ is provided. $R_1,\,R_2,\,R_3$ and R_4 can represent mono-, di-, tri- or tetra-substitution, and $R_1,\,R_2,\,R_3,\,R_4$ and R_5 are each independently selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof. $R_1,\,R_2,\,R_3$ and R_4 are optionally fused. X is selected from the group consisting of CRR', SiRR', C=O, N-R, B-R, O, S, SO, SO_2, and Se. R and R' are independently selected from the group consisting of linear alkyl, branched alkyl, and aryl. n is 1 or 2. [0017] In one aspect, the compound has the formula: Formula II R_6 represents mono-, di-, tri- or tetra-substitution, and R_6 is selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfanyl, sulfonyl, phosphino, and combinations thereof. R_6 is optionally fused and may be further substituted. [0018] In one aspect, n is 2. In another aspect, n is 1. [0019] In one aspect, X is selected from the group consisting of O and S. In another aspect, X is O. In another aspect, X is S. **[0020]** In one aspect, R_5 is aryl or substituted aryl. In another aspect, R_5 is
alkyl. In one aspect, R_5 is a 2,6-disubstituted aryl. In one aspect, R_5 is **[0021]** In one aspect, R_2 , R_3 , and R_4 are independently selected from the group consisting of hydrogen and alkyl, and at least one of R_2 , R_3 , and R_4 is alkyl. [0022] In one aspect, R_3 is aryl or heteroaryl. In another aspect, R_3 is phenyl or substituted phenyl. In one aspect, R_6 , R_2 , and R_4 are hydrogen. [0023] Specific non-limiting compounds are provided. In one aspect, the compound is selected from the group consisting of Compound 1-Compound 80. In another aspect, the compound is selected from the group consisting of Compound 81-Compound 156. [0024] A first device is also provided. The first device comprises an organic light-emitting device, further comprising an anode, a cathode, and an organic layer, disposed between the anode and the cathode, comprising a compound having the formula: Formula I $$\begin{bmatrix} R_1 \\ R_2 \end{bmatrix}$$ $$\begin{bmatrix} R_3 \\ N \\ N \end{bmatrix}$$ $$\begin{bmatrix} R_3 \\ N \\ N \end{bmatrix}$$ $$\begin{bmatrix} R_4 \\ R_4 \end{bmatrix}$$ $$\begin{bmatrix} R_4 \\ R_4 \end{bmatrix}$$ R_1 , R_2 , R_3 and R_4 can represent mono-, di-, tri- or tetrasubstitution, and R_1 , R_2 , R_3 , R_4 and R_5 are each independently selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof. R_1 , R_2 , R_3 and R_4 are optionally fused and may be further substituted. X is selected from the group consisting of CRR', SiRR', C=O, N-R, B-R, O, S, SO, SO2, and Se. R and R' are independently selected from the group consisting of linear alkyl, branched alkyl, and aryl. n is 1 or 2. [0025] In one aspect, the organic layer is an emissive layer and the compound of Formula I is an emissive dopant. In one aspect, the organic layer further comprises a host. **[0026]** In one aspect, the host comprises a triphenylene containing benzo-fused thiophene or benzo-fused furan, where any substituent in the host is an unfused substituent independently selected from the group consisting of C_nH_{2n+1} , OC_nH_{2n+1} , OAr_1 , $N(C_nH_{2n+1})_2$, $N(Ar_1)(Ar_2)$, $CH=CH=C_nH_{2n+1}$, $C=CHC_nH_{2n+1}$, Ar_1 , $Ar_1=Ar_2$, $C_nH_{2n}=Ar_1$, or no substitution. Ar_1 and Ar_2 are independently selected from the group consisting of benzene, biphenyl, naphthalene, triphenylene, carbazole, and heteroaromatic analogs thereof, and n is from 1 to 10. [0027] In one aspect, the host has the formula Compound F [0028] In one aspect, the host is a metal complex. [0029] In one aspect the first device is a consumer product. In another aspect, the first device is an organic light-emitting device. [0030] In one aspect, the first device further comprises a second emissive dopant having a peak wavelength of between 400 to 500 nanometers. In another aspect, the second emissive dopant is a fluorescent emitter. In another aspect, the second emissive dopant is a phosphorescent emitter. [0031] In one aspect, the first device comprises a lighting panel. [0032] In another aspect, the first device further comprises a first organic light-emitting device comprising a compound of Formula I and a second light-emitting device separate from the first organic light-emitting device comprising an emissive dopant having a peak wavelength of between 400 to 500 nanometers. [0033] In another aspect, the first device comprises an organic light-emitting device having a first emissive layer and a second emissive layer, where the first emissive layer comprises a compound of Formula I, and the second emissive layer comprises an emissive dopant having a peak wavelength of between 400 to 500 nanometers. [0034] A method of making a compound of formula: Formula III is provided. The method comprises reacting the condensation product of an aryl 1,2-diamine and an aryl aldehyde with manganese dioxide in a solvent. $R_1,\,R_2$ and R_5 may represent mono-, di-, tri- or tetra-substitution. Additionally, $R_1,\,R_2$ and R_5 are each independently selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof. $R_1,\,R_2$ and R_5 are optionally fused and may be further substituted. [0035] In one aspect, the condensation product comprises reacting an aryl 1,2-diamine of formula: NHR5 NH2, Formula IV with an aryl aldehyde of formula $$R_{2}$$ Formula V in the presence of phase transfer catalyst and solvent. [0036] In one aspect, the phase transfer catalyst comprises 1-hexadecylpyridinium bromide. **[0037]** In one aspect, R_5 is aryl or substituted aryl. In another aspect, R_5 is a 2,6-disubstituted aryl. In another aspect, R_5 is alkyl. #### BRIEF DESCRIPTION OF THE DRAWINGS [0038] FIG. 1 shows an organic light emitting device. [0039] FIG. 2 shows an inverted organic light emitting device that does not have a separate electron transport layer. [0040] FIG. 3 shows a compound of Formula I. #### DETAILED DESCRIPTION [0041] Generally, an OLED comprises at least one organic layer disposed between and electrically connected to an anode and a cathode. When a current is applied, the anode injects holes and the cathode injects electrons into the organic layer(s). The injected holes and electrons each migrate toward the oppositely charged electrode. When an electron and hole localize on the same molecule, an "exciton," which is a localized electron-hole pair having an excited energy state, is formed. Light is emitted when the exciton relaxes via a photoemissive mechanism. In some cases, the exciton may be localized on an excimer or an exciplex. Non-radiative mechanisms, such as thermal relaxation, may also occur, but are generally considered undesirable. [0042] The initial OLEDs used emissive molecules that emitted light from their singlet states ("fluorescence") as disclosed, for example, in U.S. Pat. No. 4,769,292, which is incorporated by reference in its entirety. Fluorescent emission generally occurs in a time frame of less than 10 nanoseconds. [0043] More recently, OLEDs having emissive materials that emit light from triplet states ("phosphorescence") have been demonstrated. Baldo et al., "Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices,' Nature, vol. 395, 151-154, 1998; ("Baldo-I") and Baldo et al., "Very high-efficiency green organic light-emitting devices based on electrophosphorescence," Appl. Phys. Lett., vol. 75, No. 3, 4-6 (1999) ("Baldo-II"), which are incorporated by reference in their entireties. Phosphorescence is described in more detail in U.S. Pat. No. 7,279,704 at cols. 5-6, which are incorporated by reference. [0044] FIG. 1 shows an organic light emitting device 100. The figures are not necessarily drawn to scale. Device 100 may include a substrate 110, an anode 115, a hole injection layer 120, a hole transport layer 125, an electron blocking layer 130, an emissive layer 135, a hole blocking layer 140, an electron transport layer 145, an electron injection layer 150, a protective layer 155, and a cathode 160. Cathode 160 is a compound cathode having a first conductive layer 162 and a second conductive layer 164. Device 100 may be fabricated by depositing the layers described, in order. The properties and functions of these various layers, as well as example materials, are described in more detail in U.S. Pat. No. 7,279, 704 at cols. 6-10, which are incorporated by reference. [0045] More examples for each of these layers are available. For example, a flexible and transparent substrate-anode combination is disclosed in U.S. Pat. No. 5,844,363, which is incorporated by reference in its entirety. An example of a p-doped hole transport layer is m-MTDATA doped with F.sub.4-TCNQ at a molar ratio of 50:1, as disclosed in U.S. Patent Application Publication No. 2003/0230980, which is incorporated by reference in its entirety. Examples of emissive and host materials are disclosed in U.S. Pat. No. 6,303, 238 to Thompson et al., which is incorporated by reference in its entirety. An example of an n-doped electron transport layer is BPhen doped with Li at a molar ratio of 1:1, as disclosed in U.S. Patent Application Publication No. 2003/0230980, which is incorporated by reference in its entirety. U.S. Pat. Nos. 5,703,436 and 5,707,745, which are incorporated by reference in their entireties, disclose examples of cathodes including compound cathodes having a thin layer of metal such as Mg:Ag with an overlying transparent, electricallyconductive, sputter-deposited ITO layer. The theory and use of blocking layers is described in more detail in U.S. Pat. No. 6,097,147 and U.S. Patent Application Publication No. 2003/ 0230980, which are incorporated by reference in their entireties. Examples of injection layers are provided in U.S. Patent Application Publication No. 2004/0174116, which is incorporated by reference in its entirety. A description of protective layers may be found in U.S. Patent Application Publication No. 2004/0174116, which is incorporated by reference in its entirety. [0046] FIG. 2 shows an inverted OLED 200. The device includes a substrate 210, a cathode 215, an emissive layer 220, a hole transport layer 225, and an anode 230. Device 200 may be fabricated by depositing the layers described, in order. Because the most common OLED configuration has a cathode disposed over the anode, and device 200 has cathode 215 disposed under anode 230, device 200 may be referred to as an "inverted" OLED. Materials similar to
those described with respect to device 100 may be used in the corresponding layers of device 200. FIG. 2 provides one example of how some layers may be omitted from the structure of device **100**. [0047] The simple layered structure illustrated in FIGS. 1 and 2 is provided by way of non-limiting example, and it is understood that embodiments of the invention may be used in connection with a wide variety of other structures. The specific materials and structures described are exemplary in nature, and other materials and structures may be used. Functional OLEDs may be achieved by combining the various layers described in different ways, or layers may be omitted entirely, based on design, performance, and cost factors. Other layers not specifically described may also be included. Materials other than those specifically described may be used. Although many of the examples provided herein describe various layers as comprising a single material, it is understood that combinations of materials, such as a mixture of host and dopant, or more generally a mixture, may be used. Also, the layers may have various sublayers. The names given to the various layers herein are not intended to be strictly limiting. For example, in device 200, hole transport layer 225 transports holes and injects holes into emissive layer 220, and may be described as a hole transport layer or a hole injection layer. In one embodiment, an OLED may be described as having an "organic layer" disposed between a cathode and an anode. This organic layer may comprise a single layer, or may further comprise multiple layers of different organic materials as described, for example, with respect to FIGS. 1 and 2. [0048] Structures and materials not specifically described may also be used, such as OLEDs comprised of polymeric materials (PLEDs) such as disclosed in U.S. Pat. No. 5,247, 190 to Friend et al., which is incorporated by reference in its entirety. By way of further example, OLEDs having a single organic layer may be used. OLEDs may be stacked, for example as described in U.S. Pat. No. 5,707,745 to Forrest et al, which is incorporated by reference in its entirety. The OLED structure may deviate from the simple layered structure illustrated in FIGS. 1 and 2. For example, the substrate may include an angled reflective surface to improve outcoupling, such as a mesa structure as described in U.S. Pat. No. 6,091,195 to Forrest et al., and/or a pit structure as [0049] Unless otherwise specified, any of the layers of the various embodiments may be deposited by any suitable method. For the organic layers, preferred methods include thermal evaporation, ink-jet, such as described in U.S. Pat. Nos. 6,013,982 and 6,087,196, which are incorporated by reference in their entireties, organic vapor phase deposition (OVPD), such as described in U.S. Pat. No. 6,337,102 to Forrest et al., which is incorporated by reference in its entirety, and deposition by organic vapor jet printing (OVJP), such as described in U.S. patent application Ser. No. 10/233, described in U.S. Pat. No. 5,834,893 to Bulovic et al., which are incorporated by reference in their entireties. 470, which is incorporated by reference in its entirety. Other suitable deposition methods include spin coating and other solution based processes. Solution based processes are preferably carried out in nitrogen or an inert atmosphere. For the other layers, preferred methods include thermal evaporation. Preferred patterning methods include deposition through a mask, cold welding such as described in U.S. Pat. Nos. 6,294, 398 and 6,468,819, which are incorporated by reference in their entireties, and patterning associated with some of the deposition methods such as ink jet and OVJD. Other methods may also be used. The materials to be deposited may be modified to make them compatible with a particular deposition method. For example, substituents such as alkyl and aryl groups, branched or unbranched, and preferably containing at least 3 carbons, may be used in small molecules to enhance their ability to undergo solution processing. Substituents having 20 carbons or more may be used, and 3-20 carbons is a preferred range. Materials with asymmetric structures may have better solution processibility than those having symmetric structures, because asymmetric materials may have a lower tendency to recrystallize. Dendrimer substituents may be used to enhance the ability of small molecules to undergo solution processing. [0050] Devices fabricated in accordance with embodiments of the invention may be incorporated into a wide variety of consumer products, including flat panel displays, computer monitors, televisions, billboards, lights for interior or exterior illumination and/or signaling, heads up displays, fully transparent displays, flexible displays, laser printers, telephones, cell phones, personal digital assistants (PDAs), laptop computers, digital cameras, camcorders, viewfinders, micro-displays, vehicles, a large area wall, theater or stadium screen, or a sign. Various control mechanisms may be used to control devices fabricated in accordance with the present invention, including passive matrix and active matrix. Many of the devices are intended for use in a temperature range comfortable to humans, such as 18 degrees C. to 30 degrees C., and more preferably at room temperature (20-25 degrees C.) [0051] The materials and structures described herein may have applications in devices other than OLEDs. For example, other optoelectronic devices such as organic solar cells and organic photodetectors may employ the materials and structures. More generally, organic devices, such as organic transistors, may employ the materials and structures. [0052] The terms halo, halogen, alkyl, cycloalkyl, alkenyl, alkynyl, arylkyl, heterocyclic group, aryl, aromatic group, and heteroaryl are known to the art, and are defined in U.S. Pat. No. 7,279,704 at cols. 31-32, which are incorporated herein by reference. [0053] A novel compound comprising a heteroleptic iridium complex having the formula: Formula I $$\begin{bmatrix} R_1 \\ R_2 \end{bmatrix}$$ $$\begin{bmatrix} R_3 \\ N \end{bmatrix}$$ $$\begin{bmatrix} R_3 \\ N \end{bmatrix}$$ $$\begin{bmatrix} R_3 \\ N \end{bmatrix}$$ $$\begin{bmatrix} R_4 is provided. R₁, R₂, R₃ and R₄ can represent mono-, di-, tri- or tetra-substitution, and R₁, R₂, R₃, R₄ and R₅ are each independently selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof. R₁, R₂, R₃ and R₄ are optionally fused. When any of R₁ to R₄ are fused, an additional ring or rings is/are formed with the ring to which R₁ to R_4 were attached. Both the additional ring or rings, and the ring to which R₁ to R₄ were attached to may be further substituted with any of the aforementioned groups in this paragraph, including combinations of groups. X is selected from the group consisting of CRR', SiRR', C=O, N-R, B-R, O, S, SO, SO₂, and Se. R and R' are independently selected from the group consisting of linear alkyl, branched alkyl, and aryl. n is 1 or 2. [0054] In one embodiment, the compound has the formula: Formula II $$R_{6}$$ R_{5} R_{2} R_{2} R_{4} R_{3} R_6 represents mono-, di-, tri- or tetra-substitution, and R_6 is selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof. R_6 is optionally fused and may be further substituted. [0055] In one embodiment, n is 2. In another embodiment, n is 1. **[0056]** In one embodiment, X is selected from the group consisting of O and S. In a preferred embodiment, X is O. In another preferred embodiment, X is S. [0057] The phenylimidazole and phenylbenzimidazole ligands in compounds of Formula I form highly stable iridium (III) complexes. Heteroleptic compounds give highly tunable phosphorescent emission and are thus important to achieve a wide range of colors. The emission of transition-metal complexes can be tuned by choosing ligands with different triplet states and HOMO/LUMO levels. Phenylimidazole and phenylbenzimidazole ligands in compounds of Formula I have shallow HOMOs and deep LUMOs, and the resulting transition can be tuned by using complementary ligands in a heteropleptic complex. For example, phenylpyridine complexes have deeper HOMO levels and shallower LUMO levels and unexpected interactions between the two ligands in heteroleptic systems can occur. The pyridyldibenzofuran- or pyridyldibenzothiophene-containing ligands presented here are phenylpyridine derivatives and the properties of the combination are unexpected. While a variety of dibenzo derivatives are suitable, the use of dibenzofuran- and dibenz-thiophene-containing ligands is preferred due to their narrow line shape, high device efficiency, and long lifetime. However, complexes containing three dibenzofuran or dibenz-thiophene ligands have high sublimation temperatures. By making heteroleptic complexes, the sublimation temperatures can be lowered enabling efficient purification and subsequent incorporation into OLEDs. [0058] Additionally, heteroleptic iridium(III) complexes of Formula I containing a pyridyldibenzofuran- or pyridyldibenzothiophene-containing ligand experience less vibronic coupling and consequently have narrower spectra, which is important for monochromatic light emission. Without being bound by theory, it is believed that this is due to interactions between the phenylimidazole or phenylbenzimidazole ligand and the pyridyldibenzofuran- or
pyridyldibenzothiophene-containing ligand in the metal complex. The combination of these two ligands in a compound of Formula I gives unexpected results with respect to the properties of compounds of Formula I. [0059] In one embodiment, R_5 is aryl or substituted aryl. In another embodiment, R_5 is alkyl. Proper selection of R_5 can decrease the sublimation temperature of the complex without having a significant impact on the overall stability. In one embodiment, R_5 is a 2,6-disubstituted aryl. In a preferred embodiment, R_5 is Without being bound by theory, it is believed that the use of 2,6-diisopropylphenyl moieties can be advantageous due to increased steric bulk around the iridium center, which can prevent solid state packing and result in high efficiency. [0060] In one embodiment, R_2 , R_3 , and R_4 are independently selected from the group consisting of hydrogen and alkyl, and at least one of R_2 , R_3 , and R_4 is alkyl. **[0061]** In one embodiment, R_3 is arryl or heteroaryl. In another embodiment, R_3 is phenyl or substituted phenyl. In one embodiment, R_6 , R_2 , and R_4 are hydrogen. [0062] Specific non-limiting compounds are provided. In one embodiment, the compound is selected from the group consisting of: $Compound \ 1$ -continued Compound 2 Compound 3 Compound 4 Compound 8 Compound 9 -continued Compound 11 Compound 12 Compound 14 Compound 26 -continued Compound 22 Compound 23 Compound 24 Compound 25 -continued Compound 27 Compound 28 Compound 30 Compound 34 Compound 36 Compound 32 Compound 38 Compound 39 Compound 40 Compound 43 Compound 44 Compound 50 -continued Compound 48 Compound 49 Compound 58 -continued Compound 55 Compound 56 Compound 57 Compound 59 Compound 60 Compound 61 Compound 63 Compound 64 Compound 65 -continued Compound 67 Compound 73 -continued Compound 71 Compound 80 Compound 77 $\cite{[0063]}$. In another embodiment, the compound is selected from the group consisting of: Compound 78 Compound 82 Compound 79 Compound 84 Compound 89 Compound 91 Compound 92 Compound 93 -continued Compound 97 Compound 94 Compound 98 Compound 95 $Compound \ 100$ Compound 101 -continued Compound 104 Compound 108 Compound 113 Compound 110 Compound 114 Compound 116 Compound 1117 Compound 118 Compound 119 -continued Compound 121 Compound 122 Compound 124 Compound 125 Compound 126 Compound 127 -continued Compound 128 Compound 129 Compound 130 Compound 132 Compound 133 -continued Compound 137 Compound 134 Compound 138 Compound 135 Compound 139 N II S S Compound 140 Compound 141 Compound 142 Compound 143 -continued Compound 145 Compound 146 Compound 148 Compound 154 Compound 155 Compound 156 [0064] A first device is also provided. The first device comprises an organic light emitting device, further comprising an anode, a cathode, and an organic layer, disposed between the anode and the cathode, comprising a compound having the formula: Formula I $$\begin{bmatrix} R_1 \\ R_5 \end{bmatrix}$$ $$\begin{bmatrix} R_1 \\ R_5 \end{bmatrix}$$ $$\begin{bmatrix} R_3 \\ N \\ N \end{bmatrix}$$ $$\begin{bmatrix} R_3 \\ N \\ N \end{bmatrix}$$ $$\begin{bmatrix} R_4 \\ R_4 \end{bmatrix}$$ $R_1,\ R_2,\ R_3$ and R_4 can represent mono-, di-, tri- or tetra-substitution, and R_1,R_2,R_3,R_4 and R_5 are each independently selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof. R_1,R_2,R_3 and R_4 are optionally fused and may be further substituted. X is selected from the group consisting of CRR', SiRR', C=O, N=R, B=R, O, S, SO, SO2, and Se. R and R' are independently selected from the group consisting of linear alkyl, branched alkyl, and aryl. n is 1 or 2. Compounds of Formula I are useful as phosphorescent dopants in OLEDs. [0065] In one embodiment, the organic layer is an emissive layer and the compound of Formula I is an emissive dopant. In one embodiment, the organic layer further comprises a host. [0066] In one embodiment, the host comprises a triphenylene containing benzo-fused thiophene or benzo-fused furan, where any substituent in the host is an unfused substituent independently selected from the group consisting of C_nH_{2n+1} , OC_nH_{2n+1} , OAr_1 , $N(C_nH_{2n+1})_2$, $N(Ar_1)(Ar_2)$, $CH = CH = C_nH_{2n+1}$, $C = CC_nH_{2n+1}$, Ar_1 , $Ar_1 = Ar_2$, $C_nH_{2n} = C_nH_{2n-1}$, or no substitution. Ar_1 and Ar_2 are independently selected from the group consisting of benzene, biphenyl, naphthalene, triphenylene, carbazole, and heteroaromatic analogs thereof, and n is from 1 to 10. [0067] In one embodiment, the host has the formula Compound F [0068] In one embodiment, the host is a metal complex. [0069] In one embodiment the first device is a consumer product. In another embodiment, the first device is an organic light-emitting device. [0070] In one embodiment, the first device further comprises a second emissive dopant having a peak wavelength of between 400 to 500 nanometers. In another embodiment, the second emissive dopant is a fluorescent emitter. In another embodiment, the second emissive dopant is a phosphorescent emitter Formula III [0071] In some embodiments, OLEDs that incorporate compounds of Formula I can be used in white illumination devices. [0072] The quality of white illumination sources can be fully described by a simple set of parameters. The color of the light source is given by its CIE chromaticity coordinates x and y (1931 2-degree standard observer CIE chromaticity). The CIE coordinates are typically represented on a two dimensional plot. Monochromatic colors fall on the perimeter of the horseshoe shaped curve starting with blue in the lower left, running through the colors of the spectrum in a clockwise direction to red in the lower right. The CIE coordinates of a light source of given energy and spectral shape will fall within the area of the curve. Summing light at all wavelengths uniformly gives the white or neutral point, found at the center of the diagram (CIE x,y-coordinates, 0.33, 0.33). Mixing light from two or more sources gives light whose color is represented by the intensity weighted average of the CIE coordinates of the independent sources. Thus, mixing light from two or more sources can be used to generate white light. [0073] When considering the use of these white light sources for illumination, the CIE color rendering index (CRI) may be considered in addition to the CIE coordinates of the source. The CRI gives an indication of how well the light source will render colors of objects it illuminates. A perfect match of a given source to the standard illuminant gives a CRI of 100. Though a CRI value of at least 70 may be acceptable for certain applications, a preferred white light source may have a CRI of about 80 or higher. [0074] In some embodiments, the first device comprises compounds of Formula I, a red emitter and a blue emitter. [0075] In one embodiment, the first device comprises a lighting panel. [0076] In another embodiment, the first device further comprises a first organic light-emitting device comprising a compound of Formula I and a second light-emitting device separate from the first organic light-emitting device comprising an emissive dopant having a peak wavelength of between 400 to 500 nanometers. [0077] In another embodiment, the first device comprises an organic light-emitting device having a first emissive layer and a second emissive layer, where the first emissive layer comprises a compound of Formula I, and the second emissive layer comprises an emissive dopant having a peak wavelength of between 400 to 500 nanometers. The first emissive layer and the second emissive layer may have one or more other layers in between them. [0078] A method of making a compound of formula: is provided. The method comprises reacting the condensation product of an aryl 1,2-diamine and an aryl aldehyde with manganese dioxide in a solvent. R_1 , R_2 and R_5 may represent mono-, di-, tri- or tetra-substitution. Additionally, R₁, R₂ and R₅ are each independently selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof. R₁, R₂ and R₅ are optionally fused and may be further substituted. [0079] Condensation of an aryl 1,2-diamine and an aryl aldehyde to produce a compound of Formula III is believed to involve an air oxidation step, as disclosed in, for example, Monatsh. Chem. 2009, 140, 375-380, which discloses a onepot procedure. Typically, after a condensation of an aryl 1,2diamine and an aryl aldehyde, the reaction product contains a mixture of corresponding benzimidazoles and aminals. However, the one-pot procedure of the prior art was not effective in synthesizing compounds of Formula III with bulky R₅ substituents, e.g 2,6-disubstituted aryl. Other procedures, which use FeCl₃ to assist in the oxidation to produce compounds of Formula III, gave low yields (typically 30% or less). [0080] It was surprisingly discovered that the use of manganese(IV) dioxide (MnO $_2$) produced compounds of Formula III in good yields, ranging from 48-75%. This result is particularly unexpected given the observed results with DDQ, a commonly used reagent for aromatization/oxidation reactions. For example, with R $_5$ =2,6-disubstituted aryl, the use of DDQ provided only an 18% yield of the desired product. Another commonly used oxidant, H $_2$ O $_2$, gave no reaction at all with R $_5$ =2,6-disubstituted aryl. Table 1 contains a summary of the results obtained using the method disclosed
herein, and a comparison with other methods. TABLE 1 TABLE 1-continued | Reaction | Yield | Reference | |---|-----------|---------------| | $\begin{array}{c c} H \\ \hline \\ NH_2 \end{array} + \begin{array}{c c} \hline \\ FeCl_3 \\ \hline \\ O_2 \end{array} \\ \hline \end{array}$ | 37% | US2010/141127 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 30% | US2010/141127 | | NH NH ₂ 1. PhCHO cetylpyridinium bromide 2. MnO ₂ | 48-75% | This work | | NH NH ₂ 1. PhCHO cetylpyridinium bromide 2. DDQ | 18% | This work | | NH NH ₂ 1. PhCHO cetylpyridinium bromide 2. H ₂ O ₂ | No
Rxn | This work | [0081] In one embodiment, the condensation product comprises reacting an aryl 1,2-diamine of formula: Formula IV with an aryl aldehyde of formula Formula V $$R_2$$, in the presence of phase transfer catalyst and solvent. A variety of phase transfer catalysts known to those in the art can be used, such as, and without limitation, ammonium salts, heterocyclic ammonium salts, and phosphonium salts. In one embodiment, the phase transfer catalyst comprises 1-hexade- cylpyridinium bromide. A variety of organic and inorganic solvents can be used, and mixtures of organic solvents with water are preferred. **[0082]** In one embodiment, R_5 is aryl or substituted aryl. In one embodiment, R_5 is a 2,6-disubstituted aryl. In another embodiment, R_5 is alkyl. #### Device Examples [0083] Compounds of Formula I were incorporated into OLEDs and compared with Compounds A-D as references. All example devices were fabricated by high vacuum ($<10^{-7}$ Torr) thermal evaporation (VTE). The anode electrode is 1200 Å of indium tin oxide (ITO). The cathode consisted of 10 Å of LiF followed by 1,000 Å of Al. All devices are encapsulated with a glass lid sealed with an epoxy resin in a nitrogen glove box (<1 ppm of H_2O and O_2) immediately after fabrication, and a moisture getter was incorporated inside the package. [0084] The organic stack of the device examples consisted of sequentially, from the ITO surface, 100 Å of Compound E as the hole injection layer (HIL), 300 Å of 4,4'-bis[N-(1-naphthyl)-N-phenylamino]biphenyl (alpha-NPD) as the hole transporting layer (HTL), 300 Å of 10-15 wt % of compound of Formula I doped in with Compound F as host as the emissive layer (EML), 50 Å of Compound F as blocking layer (BL), 400 Å of Alq (tris-8-hydroxyquinoline aluminum) as the electron transport layer (ETL). Comparative Examples with Compound A, Compound B, Compound C, and Compound D were fabricated similarly to the Device Examples except that Compound A, Compound B, Compound C, and Compound D were used as the emitter in the EML. [0085] The device results and data are summarized in Table 2 and Table 3 from those devices. As used herein, NPD, Alq, Compound A, B, C, D, E, F, Compound 81 and Compound 82 have the following structures: #### TABLE 2 VTE Phosphorescent OLEDs Compound A TABLE 2-continued #### VTE Phosphorescent OLEDs Compound B Compound C Compound D TABLE 2-continued #### VTE Phosphorescent OLEDs Compound 82 Compound E Compound F NPD TABLE 2-continued #### VTE Phosphorescent OLEDs Alq | Example | HIL | HTL | EML (300Å, doping %) | | BL | ETL 1 | |---------------------------------|--------------------|----------|--------------------------------|---------------------|-------------------|-------------| | * | Compound E
100Å | NPD 300Å | Compound | Compound A, 10% | Compound F | Alq 400Å | | Example 1 Comparative Example 2 | | NPD 300Å | Compound
F | Compound B, 15% | | Alq 400Å | | | | NPD 300Å | Compound | Compound C, 12% | 5011 | Alq 400 Å | | 1 | 10011 | NPD 300Å | Compound
F | Compound D, 10% | 0011 | Alq 400 Å | | Example 1 | Compound E
100Å | NPD 300Å | Compound
F | Compound 81,
15% | Compound F
50Å | Alq 400Å | | Example 2 | Compound E
100Å | NPD 300Å | $\operatorname*{Compound}_{F}$ | Compound 82,
12% | Compound F
50Å | Alq 400Å | TABLE 3 | VTE Device Data | | | | | | | | | | |---------------------------------------|----------------|----------------|-----------------|--------------|----------------|--------------|--------------|--------------|--------------| | | x | у | λ_{max} | FWHM
(nm) | Voltage
(V) | LE
(Cd/A) | EQE
(%) | PE (lm/W) | LT80%
(h) | | Comparative | 0.328 | 0.619 | 520 | 70 | 6.2 | 55.1 | 15.4 | 27.9 | 189 | | Example 1
Comparative
Example 2 | 0.327 | 0.618 | 516 | 68 | 4.5 | 51.2 | 14.5 | 36.1 | 98 | | Comparative
Example 3 | 0.337 | 0.605 | 512 | 72 | 5.4 | 44.1 | 12.9 | 25.8 | 100 | | Comparative
Example 4 | 0.332 | 0.609 | 514 | 74 | 5.5 | 60.5 | 17.4 | 34.5 | 147 | | Example 1
Example 2 | 0.376
0.329 | 0.603
0.625 | 534
520 | 60
60 | 6.2
5.9 | 47
54.4 | 12.4
15.0 | 23.7
29.0 | 165
122 | [0086] The device data show that Example 1 and Example 2, which are compounds of Formula I, both show narrow line shapes, high efficiency, and long lifetimes. Compound 82 and Compound C are similar except that Compound 82 contains a pyridylbenzofuran ligand, whereas Compound C does not. Compound 82 has a more saturated green color (0.329, 0.625) than Compound C (0.337, 0.605), a narrower emission (60 nm FWHM vs. 72 nm for Compound C), higher luminous efficacy (54.4 cd/A), external quantum efficiency (15.0%) and power efficacy (29 lm/W) than Compound C (44.1 cd/A, 12.9%, and 25.8 lm/W, respectively). Additionally, Compound 82 has a longer lifetime to LT₈₀% (122 h) than Compound C (100 h). #### Combination with Other Materials [0087] The materials described herein as useful for a particular layer in an organic light emitting device may be used in combination with a wide variety of other materials present in the device. For example, emissive dopants disclosed herein may be used in conjunction with a wide variety of hosts, transport layers, blocking layers, injection layers, electrodes and other layers that may be present. The materials described or referred to below are non-limiting examples of materials that may be useful in combination with the compounds disclosed herein, and one of skill in the art can readily consult the literature to identify other materials that may be useful in combination. #### HIL/HTL: **[0088]** A hole injecting/transporting material to be used in the present invention is not particularly limited, and any compound may be used as long as the compound is typically used as a hole injecting/transporting material. Examples of the material include, but not limit to: a phthalocyanine or porphryin derivative; an aromatic amine derivative; an indolocarbazole derivative; a polymer containing fluorohydrocarbon; a polymer with conductivity dopants; a conducting polymer, such as PEDOT/PSS; a self-assembly monomer derived from compounds such as phosphonic acid and sliane derivatives; a metal oxide derivative, such as MoO_x ; a p-type semiconducting organic compound, such as 1,4,5,8,9,12-Hexaazatriphenylenehexacarbonitrile; a metal complex, and a cross-linkable compounds. [0089] Examples of aromatic amine derivatives used in HIL or HTL include, but not limit to the following general structures: $$Ar^{2}$$ Ar^{3} Ar^{3} Ar^{3} Ar^{4} Ar^{4} Ar^{4} Ar^{5} Ar^{5} Ar^{6} Ar^{6} Ar^{7} Ar^{8} Ar^{8} Ar^{8} Ar^{1} Ar^{1} Ar^{1} Ar^{2} Ar^{3} Ar^{4} Ar^{5} Ar^{5} Ar^{6} Ar^{7} Ar^{8} Ar^{1} Ar^{1} Ar^{1} Ar^{1} Ar^{1} Ar^{2} Ar^{3} Ar^{4} Ar^{5} Ar^{5} Ar^{5} Ar^{6} Ar^{1} Ar^{1} Ar^{2} Ar^{3} Ar^{4} Ar^{5} Ar^{5} Ar^{1} Ar^{1} Ar^{2} Ar^{3} Ar^{4} Ar^{5} Ar^{5} [0090] Each of Ar¹ to Ar⁹ is selected from the group consisting aromatic hydrocarbon cyclic compounds such as benzene, biphenyl, triphenyl, triphenylene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, pyrene, chrysene, perylene, azulene; group consisting aromatic heterocyclic compounds such as dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, indolocarbazole, pyridylindole, pyrrolodipyridine, pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, oxathiazine, oxadiazine, indole, benzimidazole, indazole, indoxazine, benzoxazole, benzisoxazole, benzothiazole, quinoline, isoquinoline, cinnoline, quinazoline, quinoxaline, naphthyridine, phthalazine, pteridine, xanthene, acridine, phenazine, phenothiazine, phenoxazine, benzofuropyridine, furodipyridine, benzothienopyridine, thienodipyridine, benzoselenophenopyridine, and selenophenodipyridine; and group consisting 2 to 10 cyclic structural units which are groups of the same type or different types selected from the aromatic hydrocarbon cyclic group and the aromatic heterocyclic group and are bonded to each other directly or via at least one of oxygen atom, nitrogen atom, sulfur atom, silicon atom, phosphorus atom, boron atom, chain structural unit and the aliphatic cyclic group. Wherein each Ar is further substituted by a substituent selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof. [0091] In one aspect, Ar¹ to Ar⁹ is independently selected from the group consisting of: [0092] k is an integer from 1 to 20; X^1 to X^8 is C (including CH) or N; Ar^1 has the same group defined above. [0093] Examples of metal complexes used in HIL or HTL include, but not limit to the following general formula: $$\left[\left(\begin{array}{c} Y^{1} \\ Y^{2} \end{array}\right) M$$ —Ln **[0094]** M is a
metal, having an atomic weight greater than 40; $(Y^1 - Y^2)$ is a bidentate ligand, Y^1 and Y^2 are independently selected from C, N, O, P, and S; L is an ancillary ligand; m is an integer value from 1 to the maximum number of ligands that may be attached to the metal; and m+n is the maximum number of ligands that may be attached to the metal. [0095] In one aspect, $(Y^1 - Y^2)$ is a 2-phenylpyridine derivative. [0096] In another aspect, $(Y^1 - Y^2)$ is a carbene ligand. [0097] In another aspect, M is selected from Ir, Pt, Os, and Zn. [0098] In a further aspect, the metal complex has a smallest oxidation potential in solution vs. Fc^+/Fc couple less than about 0.6 V. Host: [0099] The light emitting layer of the organic EL device of the present invention preferably contains at least a metal complex as light emitting material, and may contain a host material using the metal complex as a dopant material. Examples of the host material are not particularly limited, and any metal complexes or organic compounds may be used as long as the triplet energy of the host is larger than that of the dopant. [0100] Examples of metal complexes used as host are preferred to have the following general formula: $$\left[\left(\begin{array}{c} Y^{3} \\ Y^{4} \end{array} \right] M$$ —Ln **[0101]** M is a metal; $(Y^3 - Y^4)$ is a bidentate ligand, Y^3 and Y^4 are independently selected from C, N, O, P, and S; L is an ancillary ligand; m is an integer value from 1 to the maximum number of ligands that may be attached to the metal; and m+n is the maximum number of ligands that may be attached to the metal. [0102] In one aspect, the metal complexes are: $$\left[\left(\begin{array}{c} O \\ N \end{array} \right)_{m} A I - L_{3-m} \left[\left(\begin{array}{c} O \\ N \end{array} \right)_{m} Z n - L_{2-m} \right] \right]$$ $\hbox{\tt [0103]}\quad {\rm (O--N)}$ is a bidentate ligand, having metal coordinated to atoms O and N. [0104] In another aspect, M is selected from Ir and Pt. [0105] In a further aspect, $(Y^3 - Y^4)$ is a carbene ligand. [0106] Examples of organic compounds used as host are selected from the group consisting aromatic hydrocarbon cyclic compounds such as benzene, biphenyl, triphenyl, triphenylene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, pyrene, chrysene, perylene, azulene; group consisting aromatic heterocyclic compounds such as dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, indolocarbazole, pyridylindole, pyrrolodipyridine, pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, oxathiazine, oxadiazine, indole, benzimidazole, indazole, indoxazine, benzoxazole, benzisoxazole, benzothiazole, quinoline, isoquinoline, cinnoline, quinazoline, quinoxaline, naphthyridine, phthalazine, pteridine, xanthene, acridine, phenazine, phenothiazine, phenoxazine, benzofuropyridine, furodipyridine, benzothienopyridine, thienodipyridine, benzoselenophenopyridine, and selenophenodipyridine; and group consisting 2 to 10 cyclic structural units which are groups of the same type or different types selected from the aromatic hydrocarbon cyclic group and the aromatic heterocyclic group and are bonded to each other directly or via at least one of oxygen atom, nitrogen atome, sulfur atom, silicon atom, phosphorus atom, boron atom, chain structural unit and the aliphatic cyclic group. Wherein each group is further substituted by a substituent selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof. [0107] In one aspect, host compound contains at least one of the following groups in the molecule: **[0108]** R¹ to R⁷ is independently selected from the group consisting of hydrogen, alkyl, alkoxy, amino, alkenyl, alkynyl, arylalkyl, heteroalkyl, aryl and heteroaryl, when it is aryl or heteroaryl, it has the similar definition as Ar's mentioned above. [0109] k is an integer from 0 to 20. [0110] X^1 to X^8 is selected from C (including CH) or N. ### HBL: [0111] A hole blocking layer (HBL) may be used to reduce the number of holes and/or excitons that leave the emissive layer. The presence of such a blocking layer in a device may result in substantially higher efficiencies as compared to a similar device lacking a blocking layer. Also, a blocking layer may be used to confine emission to a desired region of an OLED. [0112] In one aspect, compound used in HBL contains the same molecule used as host described above. [0113] In another aspect, compound used in HBL contains at least one of the following groups in the molecule: $$\bigvee_{F}^{F}\bigvee_{k}$$ [0114] $\,$ k is an integer from 0 to 20; L is an ancillary ligand, m is an integer from 1 to 3. #### ETL: [0115] Electron transport layer (ETL) may include a material capable of transporting electrons. Electron transport layer may be intrinsic (undoped), or doped. Doping may be used to enhance conductivity. Examples of the ETL material are not particularly limited, and any metal complexes or organic compounds may be used as long as they are typically used to transport electrons. [0116] In one aspect, compound used in ETL contains at least one of the following groups in the molecule: [0117] R¹ is selected from the group consisting of hydrogen, alkyl, alkoxy, amino, alkenyl, alkynyl, arylalkyl, heteroalkyl, aryl and heteroaryl, when it is aryl or heteroaryl, it has the similar definition as Ar's mentioned above. [0118] Ar^1 to Ar^3 has the similar definition as Ar's mentioned above. [0119] k is an integer from 0 to 20. [0120] X^1 to X^8 is selected from C (including CH) or N. [0121] In another aspect, the metal complexes used in ETL contains, but not limit to the following general formula: $$\begin{bmatrix} \begin{pmatrix} O \\ N \end{pmatrix}_m Al - L_{3-m} & \begin{pmatrix} O \\ N \end{pmatrix}_m Be - L_{2-m} & \begin{pmatrix} O \\ N \end{pmatrix}_m Zn - L_{2-m} \\ \begin{pmatrix} O \\ N \end{pmatrix}_m Zn - L_{2-m} & \begin{pmatrix} O \\ N
\end{pmatrix}_m Zn - L_{2-m} & \begin{pmatrix} O \\ N \end{pmatrix}_m Zn - L_{2-m} & \begin{pmatrix} O \\ N \end{pmatrix}_m Zn - L_{2-m} & \begin{pmatrix} O \\ N \end{pmatrix}_m Zn - L_{2-m} & \begin{pmatrix} O \\ N \end{pmatrix}_m Zn -$$ [0122] (O—N) or (N—N) is a bidentate ligand, having metal coordinated to atoms O, N or N, N; L is an ancillary ligand; m is an integer value from 1 to the maximum number of ligands that may be attached to the metal. [0123] In any above-mentioned compounds used in each layer of the OLED device, the hydrogen atoms can be partially or fully deuterated. [0124] In addition to and/or in combination with the materials disclosed herein, many hole injection materials, hole transporting materials, host materials, dopant materials, exi- ton/hole blocking layer materials, electron transporting and electron injecting materials may be used in an OLED. Non-limiting examples of the materials that may be used in an OLED in combination with materials disclosed herein are listed in Table 4 below. Table 4 lists non-limiting classes of materials, non-limiting examples of compounds for each class, and references that disclose the materials. TABLE 4 | MATERIAL | EXAMPLES OF MATERIAL | PUBLICATIONS | |--|--|---| | | Hole injection materials | | | Phthalocyanine and porphryin compounds | N Cu N | Appl. Phys. Lett. 69,
2160 (1996) | | Starburst triarylamines | | J. Lumin. 72-74, 985
(1997) | | | | | | CF_X Fluorohydrocarbon polymer | $-$ CH _x F _y $\frac{1}{n}$ | Appl. Phys. Lett. 78, 673(2001) | | Conducting polymers
(e.g., PEDOT:PSS,
polyaniline,
polythiophene) | SO ₃ °(H ⁺) | Synth. Met. 87, 171
(1997)
WO2007002683 | | Phosphonic acid and sliane
SAMs | N — $SiCl_3$ | US20030162053 | | | TABLE 4-continued | | |--|---------------------------------------|--| | MATERIAL | EXAMPLES OF MATERIAL | PUBLICATIONS | | Triarylamine or polythiophene polymers with conductivity dopants | and | EP1725079A1 | | | Br
N | | | | F F F F F F F F F F F F F F F F F F F | | | Arylamines complexed
with metal oxides such as
molybdenum and tungsten
oxides | N + MoO_x | SID Symposium
Digest, 37, 923
(2006)
WO2009018009 | TABLE 4-continued | MATERIAL | EXAMPLES OF MATERIAL | PUBLICATIONS | |---|--|-------------------------------------| | p-type semiconducting organic complexes | NC CN N N N N N N CN CN | US20020158242 | | Metal organometallic complexes | Ir 3 | US20060240279 | | Cross-linkable compounds | | US20080220265 | | Triarylamines
(e.g., TPD, α-NPD) | Hole transporting materials N N N N N N N N N N N N N | Appl. Phys. Lett. 51,
913 (1987) | | | | U.S. Pat. No. 5061569 | TABLE 4-continued | | TABLE 4-continued | | |----------|----------------------|-------------------------------------| | MATERIAL | EXAMPLES OF MATERIAL | PUBLICATIONS | | | | EP650955 | | | | J. Mater. Chem. 3, 319 (1993) | | | | Appl. Phys. Lett. 90, 183503 (2007) | TABLE 4-continued | | TABLE 4-continued | | |--|-------------------------|--| | MATERIAL | EXAMPLES OF MATERIAL | PUBLICATIONS | | | | Appl. Phys. Lett. 90, 183503 (2007) | | Triarylamine on spirofluorene core | Ph_2N NPh_2 NPh_2 | Synth. Met. 91, 209
(1997) | | Arylamine carbazole compounds | | Adv. Mater. 6, 677
(1994),
US20080124572 | | Triarylamine with (di)benzothiophene/ (di)benzofuran | | US20070278938,
US20080106190 | TABLE 4-continued | MATERIAL | EXAMPLES OF MATERIAL | PUBLICATIONS | |-------------------------|--|--------------------------------------| | Indolocarbazoles | | Synth. Met. 111, 421
(2000) | | Isoindole compounds | | Chem. Mater. 15, 3148 (2003) | | | | | | Metal carbene complexes | Phosphorescent OLED host materials Red hosts | US20080018221 | | Arylcarbazoles | N————————————————————————————————————— | Appl. Phys. Lett. 78,
1622 (2001) | TABLE 4-continued | MATERIAL | EXAMPLES OF MATERIAL | PUBLICATIONS | |--
--
--|---| | Metal 8-hydroxyquinolates
(e.g., Alq, BAlq) | $\begin{bmatrix} \\ \\ \\ \end{bmatrix}_{0}^{N} = \begin{bmatrix} \\ \\ \\ \end{bmatrix}_{3}^{Al}$ | Nature 395, 151 (1998) | | | $\begin{bmatrix} \\ \\ \\ \\ \\ \end{bmatrix}$ $Al-O$ | US20060202194 | | | $\begin{bmatrix} \\ \\ \\ \\ \end{bmatrix} \begin{bmatrix} \end{bmatrix} \begin{bmatrix} \\ \\ \\ \end{bmatrix} \begin{bmatrix} \end{bmatrix} \begin{bmatrix} \\ \\ \end{bmatrix} \begin{bmatrix} \\ \\ \end{bmatrix} \begin{bmatrix} \\ \end{bmatrix} \begin{bmatrix} \\ \end{bmatrix} \begin{bmatrix} \\ \\ \end{bmatrix} \begin{bmatrix} \end{bmatrix} \begin{bmatrix} \\ \end{bmatrix} \end{bmatrix} \begin{bmatrix} \\ \end{bmatrix} \begin{bmatrix} \\ \end{bmatrix} \begin{bmatrix} \\ \end{bmatrix} \begin{bmatrix} \\ \end{bmatrix} \end{bmatrix} \begin{bmatrix} \\ \end{bmatrix} \begin{bmatrix} \\ \end{bmatrix} \begin{bmatrix} \\ \end{bmatrix} \begin{bmatrix} \\ \end{bmatrix} \end{bmatrix} \begin{bmatrix} \\ \end{bmatrix} \begin{bmatrix} \\ \end{bmatrix} \begin{bmatrix} \\ \end{bmatrix} \begin{bmatrix} \\ \end{bmatrix} \end{bmatrix} \begin{bmatrix} \\ \end{bmatrix} \begin{bmatrix} \\ \end{bmatrix} \begin{bmatrix} \\ \end{bmatrix} \end{bmatrix} \begin{bmatrix} \\ \end{bmatrix} \begin{bmatrix} \\ \end{bmatrix} \end{bmatrix} \begin{bmatrix} \\ \end{bmatrix} \begin{bmatrix} \\ \end{bmatrix} \begin{bmatrix} \\ \end{bmatrix} \end{bmatrix} \begin{bmatrix} \\ \end{bmatrix} \begin{bmatrix} \\ \end{bmatrix} \begin{bmatrix} \\ \end{bmatrix} \end{bmatrix} \begin{bmatrix} \\ \end{bmatrix} \begin{bmatrix} \\ \end{bmatrix} \end{bmatrix} \begin{bmatrix} \\ \end{bmatrix} \begin{bmatrix} \\ \end{bmatrix} \begin{bmatrix} \\ \end{bmatrix} \end{bmatrix} \begin{bmatrix} \\ \end{bmatrix} \begin{bmatrix} \\ \end{bmatrix} \end{bmatrix} \begin{bmatrix} \\ \end{bmatrix} \begin{bmatrix} \\ \end{bmatrix} \end{bmatrix} \begin{bmatrix} \\ \end{bmatrix} $ | WO2005014551 | | | $\begin{bmatrix} \\ \\ \\ \\ \\ \end{bmatrix}$ Al-O-N | WO2006072002 | | Metal
phenoxybenzothiazole
compounds | \sum_{N} \sum_{n | Appl. Phys. Lett. 90,
123509 (2007) | | Conjugated oligomers and polymers (e.g., polyfluorene) | C_8H_{17} C_8H_{17} | Org. Electron. 1, 15 (2000) | | Aromatic fused rings | | WO2009066779,
WO2009066778,
WO2009063833,
US20090045731,
US20090045730,
WO2009008311,
US20090008605,
US20090009065 | TABLE 4-continued | MATERIAL | EXAMPLES OF MATERIAL | PUBLICATIONS | |----------------------------|---------------------------------------|--------------------------------------| | Zinc complexes | H Zn N H Green hosts | WO2009062578 | | Arylcarbazoles | | Appl. Phys. Lett. 78,
1622 (2001) | | | N N N | US20030175553 | | | N N N N N N N N N N N N N N N N N N N | WO2001039234 | | Aryltriphenylene compounds | | US20060280965 | TABLE 4-continued | MATERIAL | EXAMPLES OF MATERIAL | PUBLICATIONS | |-------------------------------|----------------------|--------------------------------------| | | | US20060280965 | | | | WO2009021126 | | Donor acceptor type molecules | | WO2008056746 | | | | | | Aza-carbazole/DBT/DBF | | JP2008074939 | | | | N | | Polymers (e.g., PVK) | N N | Appl. Phys. Lett. 77,
2280 (2000) | TABLE 4-continued | MATERIAL | EXAMPLES OF MATERIAL | PUBLICATIONS | |---|----------------------|--------------| | Spirofluorene compounds | | WO2004093207 | | Metal
phenoxybenzooxazole
compounds | Al—O— | WO2005089025 | | | AI — O — N | WO2006132173 | | | O N Zn | JP200511610 | | Spirofluorene-carbazole
compounds | | JP2007254297 | TABLE 4-continued | MATERIAL | EXAMPLES OF MATERIAL | PUBLICATIONS | |--|----------------------|-----------------------------------| | | | JP2007254297 | | Indolocabazoles | | WO2007063796 | | | | WO2007063754 | | 5-member ring electron
deficient heterocycles
(e.g., triazole, oxadiazole) | | J. Appl. Phys. 90, 5048
(2001) | | | | WO2004107822 | TABLE 4-continued | MATERIAL | EXAMPLES OF MATERIAL | PUBLICATIONS | |--|--|--------------------------------------| | Tetraphenylene complexes | | US20050112407 | | Metal phenoxypyridine compounds | \sum_{N} \sum_{n | WO2005030900 | | Metal coordination complexes (e.g., Zn, Al with $\hat{N N}$ ligands) | N
N
N
Zn | US20040137268,
US20040137267 | | Androdonalo | Blue hosts | Anal Dhan Lett 02 | | Arylcarbazoles | | Appl. Phys. Lett, 82,
2422 (2003) | | | | US20070190359 | TABLE 4-continued | | TABLE 4-conunued | | |--|---------------------------------------|---------------------------------| | MATERIAL | EXAMPLES OF MATERIAL | PUBLICATIONS | | Dibenzothiophene/Dibenz
ofuran-carbazole
compounds | | WO2006114966,
US20090167162 | | | S S S S S S S S S S S S S S S S S S S | US20090167162 | | | | WO2009086028 | | | S S S S S S S S S S S S S S S S S S S | US20090030202,
US20090017330 | | Silicon aryl compounds | | US20050238919 | TABLE 4-continued | | TABLE 4-continued | | |---|--|------------------------| | MATERIAL | EXAMPLES OF MATERIAL | PUBLICATIONS | | | Si Si Si | WO2009003898 | | Silicon/Germanium aryl compounds | Si-Si-Si-Si-Si-Si-Si-Si-Si-Si-Si-Si-Si-S | EP2034538A | | Aryl benzoyl ester | | WO2006100298 | | High triplet metal organometallic complex | Phosphorescent dopants Red dopants | U.S. Pat. No. 7154114 | | Heavy metal porphyrins (e.g., PtOEP) | Et Et Et N N N Et Et Et | Nature 395, 151 (1998) | TABLE 4-continued | MATERIAL | EXAMPLES OF MATERIAL | PUBLICATIONS | |---------------------------------------|----------------------|--------------------------------------| | Iridium(III) organometallic complexes | Ir O | Appl. Phys. Lett. 78,
1622 (2001) | | | Ir o | US20030072964 | | | | US20030072964 | | | | US20060202194 | | | | US20060202194 | TABLE 4-continued | MATERIAL | EXAMPLES OF MATERIAL | PUBLICATIONS | |----------|----------------------|----------------------------| | | Ir | US20070087321 | | | Ir | US20070087321 | | | $H_{17}C_8$ | Adv. Mater. 19, 739 (2007) | | | Ir(acac) | WO2009100991 | | | | WO2008101842 | TABLE 4-continued | MATERIAL | EXAMPLES OF MATERIAL | PUBLICATIONS | |--|---|--------------------------------| | Platinum(II) organometallic complexes | Pt o | WO2003040257 | | Osminum(III) complexes | F_3C N N $Os(PPhMe_2)_2$ | Chem. Mater. 17, 3532 (2005) | | Ruthenium(II) complexes | $\begin{bmatrix} & & & & \\ & & & & \\ & & & & \\ & & & & $ | Adv. Mater. 17, 1059
(2005) | | Rhenium (I), (II), and (III) complexes |
Re—(CO) ₄ Green dopants | US20050244673 | | Iridium(III) organometallic complexes | and its derivatives | Inorg. Chem, 40, 1704 (2001) | TABLE 4-continued | TABLE 4-continued | | | |-------------------|--|-----------------------| | MATERIAL | EXAMPLES OF MATERIAL | PUBLICATIONS | | | | US20020034656 | | | | U.S. Pat. No. 7332232 | | | | US20090108737 | | | Ir January 1 and | US20090039776 | TABLE 4-continued | TABLE 4-continued | | | |-------------------|----------------------|--------------------------------| | MATERIAL | EXAMPLES OF MATERIAL | PUBLICATIONS | | | Ir S | U.S. Pat. No. 6921915 | | | | U.S. Pat. No. 6687266 | | | Ir | Chem. Mater. 16, 2480 (2004) | | | Ir | US20070190359 | | | Ir | US 20060008670
JP2007123392 | TABLE 4-continued | | T. B.Z.Z. , COMMAND | | |----------|---|--------------------------------------| | MATERIAL | EXAMPLES OF MATERIAL | PUBLICATIONS | | | $\begin{bmatrix} \\ \\ \\ \\ \end{bmatrix}_2 \end{bmatrix}$ | Adv. Mater. 16, 2003
(2004) | | | Ir
N | Angew. Chem. Int. Ed. 2006, 45, 7800 | | | Ir S | WO2009050290 | | | S N Ir | US20090165846 | | | | US20080015355 | | TABLE 4-continued | | | |---|----------------------|---| | MATERIAL | EXAMPLES OF MATERIAL | PUBLICATIONS | | Monomer for polymeric
metal organometallic
compounds | | U.S. Pat. No. 7250226,
U.S. Pat. No. 7396598 | | Pt(II) organometallic
complexes, including
polydentated ligands | Pt—Cl | Appl. Phys. Lett. 86, 153505 (2005) | | | N
Pt—O | Appl. Phys. Lett. 86, 153505 (2005) | | | P_1 F_5 F_5 | Chem. Lett. 34, 592 (2005) | TABLE 4-continued | MATERIAL | EXAMPLES OF MATERIAL | PUBLICATIONS | |------------------------|---|------------------------------| | | N Pt | WO2002015645 | | | Ph Ph | US20060263635 | | Cu complexes | P Cu N N N | WO2009000673 | | Gold complexes | N-Au N-Au N-Au N-Au N-Au N-Au N-Au N-Au | Chem. Commun. 2906
(2005) | | Rhenium(III) complexes | F ₃ C OC Re CO | Inorg. Chem. 42, 1248 (2003) | TABLE 4-continued | MATERIAL | EXAMPLES OF MATERIAL | PUBLICATIONS | |---|----------------------|-----------------------| | Deuterated organometallic complexes | D D Ir | US20030138657 | | Organometallic complexes with two or more metal centers | | US20030152802 | | | F F S Blue dopants | U.S. Pat. No. 7090928 | | Iridium(III) organometallic complexes | F Ir N | WO2002002714 | TABLE 4-continued | MATERIAL | EXAMPLES OF MATERIAL | PUBLICATIONS | |----------|---|---| | | Ir Ir | WO2006009024 | | | $\begin{bmatrix} & & & & \\ & & & & \\ & & & & \\ & & & & $ | US20060251923 | | | Ir 3 | U.S. Pat. No. 7393599,
WO2006056418,
US20050260441,
WO2005019373 | | | Ir 3 | U.S. Pat. No. 7534505 | | | Ir ⁺ | U.S. Pat. No. 7445855 | | | | US20070190359,
US20080297033 | TABLE 4-continued | TABLE 4-continued | | | |-------------------|-------------------------------|------------------------------------| | MATERIAL | EXAMPLES OF MATERIAL | PUBLICATIONS | | | Ir 3 | U.S. Pat. No. 7338722 | | | N
N
N
J ₃ | US20020134984 | | | | Angew. Chem. Int. Ed. 47, 1 (2008) | | | | Chem. Mater. 18, 5119 (2006) | | | F Ir | Inorg. Chem. 46, 4308 (2007) | TABLE 4-continued | MATERIAL | EXAMPLES OF MATERIAL | PUBLICATIONS | |----------------------|--|-----------------------| | | Ir N | WO2005123873 | | | Ir | WO2005123873 | | | $\begin{bmatrix} \\ \\ \\ \\ \\ \end{bmatrix}_3$ | WO2007004380 | | | | WO2006082742 | | Osmium(II) complexes | Os | U.S. Pat. No. 7279704 | TABLE 4-continued | MATERIAL | EXAMPLES OF MATERIAL | PUBLICATIONS | |--
--|--------------------------------------| | | N
N
Os (PPh ₃) | Organometallics 23, 3745 (2004) | | Gold complexes | Ph ₂ P PPh ₂ Au Au Cl | Appl. Phys.
Lett. 74, 1361
(1999) | | Platinum(II) complexes | S N N N N N N N N N N N N N N N N N N N | WO2006098120,
WO2006103874 | | | Exciton/hole blocking layer materials | | | Bathocuprine compounds
(e.g., BCP, BPhen) | | Appl. Phys. Lett. 75, 4
(1999) | | | | Appl. Phys. Lett. 79,
449 (2001) | | Metal 8-hydroxyquinolates (e.g., BAlq) | $\begin{bmatrix} \\ \\ \\ \end{bmatrix} \begin{bmatrix} \\ \\ \\ \end{bmatrix} \begin{bmatrix} \\ \\ \\ \end{bmatrix} \begin{bmatrix} \\ \\ \\ \end{bmatrix} \end{bmatrix} \begin{bmatrix} \\ \\ \\ \end{bmatrix} \begin{bmatrix} \\ \\ \end{bmatrix} \begin{bmatrix} \\ \\ \\ \end{bmatrix} \begin{bmatrix} \end{bmatrix} \begin{bmatrix} \\ \\ \end{bmatrix} \begin{bmatrix} \\ \\ \end{bmatrix} \begin{bmatrix} \end{bmatrix} \begin{bmatrix} \\ \end{bmatrix} \end{bmatrix} \begin{bmatrix} \\ \end{bmatrix} \end{bmatrix} \begin{bmatrix} \\ \end{bmatrix} \begin{bmatrix} \\ \end{bmatrix} \begin{bmatrix} \\ \end{bmatrix} \begin{bmatrix} \\ \end{bmatrix} \end{bmatrix} \begin{bmatrix} \\ \end{bmatrix} \begin{bmatrix} \\ \end{bmatrix} \begin{bmatrix} \\ \end{bmatrix} \begin{bmatrix} \\ \end{bmatrix} \end{bmatrix} \begin{bmatrix} \\ \end{bmatrix} \begin{bmatrix} \\ \end{bmatrix} \begin{bmatrix} \\ \end{bmatrix} \end{bmatrix} \begin{bmatrix} \\ \end{bmatrix} \begin{bmatrix} \\ \end{bmatrix} \end{bmatrix} \begin{bmatrix} \\ \end{bmatrix} \begin{bmatrix} \\ \end{bmatrix} \begin{bmatrix} \\ \end{bmatrix} \end{bmatrix} \begin{bmatrix} \\ \end{bmatrix} \begin{bmatrix} \\ \end{bmatrix} \begin{bmatrix} \\ \end{bmatrix} \end{bmatrix} \begin{bmatrix}$ | Appl. Phys. Lett. 81,
162 (2002) | TABLE 4-continued | MATERIAL | EXAMPLES OF MATERIAL | PUBLICATIONS | |---|---------------------------------------|-------------------------------------| | 5-member ring electron deficient heterocycles such as triazole, oxadiazole, imidazole, benzoimidazole | | Appl. Phys. Lett. 81,
162 (2002) | | Triphenylene compounds | | US20050025993 | | Fluorinated aromatic compounds | F F F F F F F F F F | Appl. Phys. Lett. 79, 156 (2001) | TABLE 4-continued | TABLE 4-continued | | | |--|---------------------------------|---------------| | MATERIAL | EXAMPLES OF MATERIAL | PUBLICATIONS | | Phenothiazine-S-oxide | | WO2008132085 | | | Electron transporting materials | | | Anthracene-
benzoimidazole
compounds | | WO2003060956 | | | | US20090179554 | | Aza triphenylene
derivatives | N N | US20090115316 | TABLE 4-continued | MATERIAL | EXAMPLES OF MATERIAL | PUBLICATIONS | |---|--|--| | Anthracene-benzothiazole compounds | | Appl. Phys. Lett. 89,
063504 (2006) | | Metal 8-hydroxyquinolates (e.g., Alq ₃ , Zrq ₄) | $\begin{bmatrix} \\ \\ \\ \\ \end{bmatrix}$ Al | Appl. Phys. Lett. 51,
913 (1987)
U.S. Pat. No. 7230107 | | Metal
hydroxybenoquinolates | $\begin{bmatrix} \\ \\ \\ \\ \end{bmatrix}_2$ Be | Chem. Lett. 5, 905
(1993) | | Bathocuprine compounds such as BCP, BPhen, etc | | Appl. Phys. Lett. 91,
263503 (2007) | | | | Appl. Phys. Lett. 79,
449 (2001) | | 5-member ring electron deficient heterocycles (e.g., triazole, oxadiazole, imidazole, benzoimidazole) | | Appl. Phys. Lett. 74,
865 (1999) | TABLE 4-continued | MATERIAL | EXAMPLES OF MATERIAL | PUBLICATIONS | |--------------------------------|---|---------------------------------------| | | N-N
O | Appl. Phys. Lett. 55,
1489 (1989) | | | | Jpn. J. Apply. Phys. 32, L917 (1993) | | Silole compounds | N N N N N N N N N N N N N N N N N N N | Org. Electron. 4, 113 (2003) | | Arylborane compounds | B B B | J. Am. Chem. Soc.
120, 9714 (1998) | | Fluorinated aromatic compounds | $F \longrightarrow F \longrightarrow$ | J. Am. Chem. Soc. 122, 1832 (2000) | | Fullerene (e.g., C60) | | US20090101870 | TABLE 4-continued | MATERIAL | EXAMPLES OF MATERIAL | PUBLICATIONS | |--------------------|---|-----------------------| | Triazine complexes | $F \longrightarrow F \qquad $ | US20040036077 | | Zn (N N) complexes | Zn N SO ₂ | U.S. Pat. No. 6528187 | ## EXPERIMENTAL [0125] Chemical abbreviations used throughout this document are as follows: Cy is cyclohexyl, dba is dibenzylideneacetone, EtOAc is ethyl acetate, PPh_3 is triphenylphosphine, DDQ is dichloro-5,6-dicyanobenzoquinone, DCM is dichloromethane. ### Example 1 $Synthesis of \ Condensation \ Product of \ Benzaldehyde \\ and \ N-(2,6-diisopropylphenyl) benzene-1,2-diamine$ # [0126] -continued $$P(Cy)_{2}$$ $$Pd_{2}(dba)_{3}$$ $$Cs_{2}CO_{3}$$ $$NO_{2}$$ [0127] 1-Bromo-2-nitrobenzene (15 g, 75 mmol), 2,6-di-isopropylaniline (14.0 mL, 75 mmol) and cesium carbonate (41.5 g, 127 mmol) were mixed in 500 mL of toluene and the solution was bubbled with nitrogen for 20 min. Pd₂(dba)₃ (1.36 g, 1.49 mmol) and dicyclohexyl(2',6'-dimethoxy-[1,1'-biphenyl]-2-yl)phosphine (2.44 g, 5.94 mmol) were added and reaction mixture was heated to reflux for 18 h. After cooling, the organic layer separated and the aqueous layer was extracted with 3×50 mL dichloromethane and dried over sodium sulfate. After removing the solvent under reduced pressure, the crude product was chromatographed on silica gel with 10:90 (v/v) ethyl acetate:hexane and 20 g (72%) of the product was obtained. The product was confirmed by GC/MS, NMR and HPLC (99.96% pure) [0128] 2,6-Diisopropyl-N-(2-nitrophenyl) aniline (12 g, 40.2 mmol) was dissolved in 200 mL ethanol and palladium on carbon (0.642 g) was added. The reaction mixture was placed on the Parr hydrogenator for 1 h. The reaction mixture was filtered through a Celite® plug, washed with dichloromethane and evaporated. The crude product was chromatographed on silica gel with 10:90 (v/v) ethyl acetate:hexane and 10 g (93%) of the product was obtained. The product was confirmed by GC/MS and NMR. [0129] N-(2,6-diisopropylphenyl)benzene-1,2-diamine (16.5 g, 61.5 mmol), benzaldehyde (9.8 mL, 92 mmol) and 1-hexadecylpyridinium bromide (1.2 g, 3.1 mmol) were dissolved in 50 mL THF and 500 mL water and stirred at room temperature overnight. By GC/MS the reaction mixture typically showed a mixture of the phenylbenzimidazole product and the phenyl-2,3-dihydro-1H-benzo[d]imidazole product (ca. 50:50). Brine (200 mL) was added and the reaction mixture extracted with EtOAc (3×300 mL), dried over sodium sulfate and evaporated. The total crude yield was 20 g (~91%) and was carried onto the next step. #### Example 2 Reaction of Condensation Product of Benzaldehyde and N-(2,6-diisopropylphenyl)benzene-1,2-diamine with Manganese (IV) Oxide [0130] [0131] The mixture of the phenylbenzimidazole product and the phenyl-2,3-dihydro-1H-benzo[d]imidazole product (18 g, 50.5 mmol) obtained as in Example 1 was combined and manganese(IV) oxide (22 g, 252 mmol) in 300 mL of toluene. With vigorous stirring, the reaction was heated to reflux for 10 h, cooled, filtered through a plug of silica gel eluted with dichloromethane and evaporated. The crude product was chromatographed on silica gel with 0-3% ethyl acetate in dichloromethane and then recrystallized from hexane to give 14.7 g (82%) of the product. The product was confirmed by HPLC (>98%) and NMR. Yields ranged from 48-75%. ### Example 3 Reaction of Condensation Product of Benzaldehyde and N-(2,6-diisopropylphenyl)benzene-1,2-diamine with DDQ ## [0132] [0133] To the mixture of the phenylbenzimidazole product and the phenyl-2,3-dihydro-1H-benzo[d]imidazole product (10.19 g, 44.9 mmol) obtained as in Example 1 was added 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ) (10.19 g, 44.9 mmol) in 300 mL THF at 0° C. An exothermic reaction resulted, with the temperature increasing to 45° C. The reaction mixture was allowed to stir at room temperature for 3 h. GC/MS confirmed the complete oxidation to the benzimidazole. Brine (200 mL) was added and the reaction mixture extracted 3 x 200 mL with ethyl acetate. The combined organic layers were dried over sodium sulfate, filtered and the solvent removed under reduced pressure. The crude product was chromatographed on silica gel with 0-3% ethyl acetate in DCM to give 3.2 g (20%) of the product. The product was confirmed by HPLC and GC/MS. #### Example 4 Reaction of Condensation Product of Benzaldehyde and N-(2,6-diisopropylphenyl)benzene-1,2-diamine with $\rm H_2O_2$ ## [0134] [0135] The mixture of the phenylbenzimidazole product and the phenyl-2,3-dihydro-1H-benzo[d]imidazole product (1 g, 4.5 mmol) obtained as in Example 1 was combined and $30\%\,H_2O_2$ in water and allowed to stir overnight. The reaction was checked by GC/MS and showed the same product ratio as the starting material. ## Synthesis of Compounds 81 and 82 #### Example 5 Synthesis of 4-(2-pyridyl)dibenzo[b,d]furan ## [0136] $$P(Cy)_2$$ $$Pd_2(dba)_3$$ $$R_3PO_4(H_2O), toluene, H_2O$$ [0137] To a 1 L round-bottom flask was added 2-bromopyridine (13.80 mL, 142 mmol), dibenzo[b,d]furan-4-ylboronic acid (25 g, 118 mmol), dicyclohexyl(2',6'-dimethoxy-[1,1'biphenyl]-2-yl)phosphine (1.936 g, 4.72 mmol) and potassium phosphate tribasic monohydrate (81 g, 354 mmol) with toluene (350 mL) and water (35 mL). The reaction mixture was degassed with N₂ for 20 minutes. Pd₂(dba)₃ (2.16 g, 2.35 mmol) was added and the reaction mixture was refluxed for 18 h. Completion of the reaction was confirmed by HPLC. GC and TLC. After cooling, the aqueous layer was removed and toluene was evaporated under reduced pressure. The residue was dissolved in dichloromethane and
passed through one inch silica gel plug on a frit, eluting with dichloromethane. The crude product was chromatographed on silica gel with 20-25% ethyl acetate in hexane to give 18 g (62%) of the product. The product was confirmed by HPLC (99.6% purity) and GC/MS. #### Example 6 Synthesis of 5-bromo-2-(dibenzo[b,d]furan-4-yl)-4-methylpyridine #### Step 1 [0139] 2,5-Dibromo-4-methylpyridine (30 g, 118 mmol), dibenzo[b,d]furan-4-ylboronic acid (25 g, 118 mmol), Pd(PPh₃)₄ (1.4 g, 1.18 mmol), and $\rm K_2CO_3$ (49 g, 354 mmol) were added to a flask with dimethoxyethane (450 mL) and water (100 mL) and degassed with nitrogen. The reaction mixture was heated to reflux for 15 h before cooling to room temperature. EtOAc and water were added, the organic layer separated and the aqueous layer was extracted with $\rm 3\times50\,mL$ dichloromethane and dried over sodium sulfate. After remov- ing the solvent under reduced pressure, the crude product was chromatographed on silica gel with dichloromethane and 29.7 g of crude product was obtained. The product was crystallized from hexane to give 28.8 g (72%) of pure product. The product was confirmed by NMR and HPLC (99.3% pure) #### Step 2 Synthesis of 2-(dibenzo[b,d]furan-4-yl)-4,5-dimethylpyridine [0140] [0141] -Bromo-2-(dibenzo[b,d]furan-4-yl)-4-methylpyridine (28.7 g, 85 mmol), dicyclohexyl(2',6'-dimethoxy-[1,1'-biphenyl]-2-yl)phosphine (1.394 g, 3.39 mmol) and potassium phosphate monohydrate (58.6 g, 255 mmol) were added to toluene (500 mL) and water (50 mL) and degassed for 20 min. Trimethylboroxine (14.83 mL, 106 mmol) and Pd₂ (dba)₃ (0.777 g, 0.849 mmol) were added and the reaction mixture heated to reflux overnight. After cooling, the organic layer was separated and the aqueous layer extracted 3 x 50 mL with EtOAc, dried over sodium sulfate and evaporated. The crude product was chromatographed on silica gel with 8/2 dichloromethane/EtOAc in hexane to give 19.2 g of an off-white solid which was recrystallized from hexane to give 16.8 g (83%) of the product as white needles. The product was confirmed by NMR and HPLC (99.97% pure). #### Synthesis of Compounds A-D #### Example 7 Synthesis of 2-([1,1'-biphenyl]-3-yl)-4,5-dimethylpy-ridine #### Step 1 [0142] [0143] 2,5-Dibromo-4-methylpyridine (10 g, 39.9 mmol), [1,1'-biphenyl]-3-ylboronic acid (7.89 g, 39.9 mmol) and tetrakis(triphenylphosphine)palladium(0) (2.303 g, 1.99 mmol), toluene (250 mL) and water (25 mL) were placed in a flask under nitrogen. The reaction mixture was degassed with nitrogen for 20 minutes and heated to reflux for 18 h. After cooling, the organic layer was separated and the aqueous layer extracted 3 x 50 mL with dichloromethane, dried over sodium sulfate and evaporated. The crude product was chromatographed on silica gel with 10% ethyl acetate in hexane to give 11.5 g (85%) of the product. The product was confirmed by NMR and GC/MS. ## Step 2 [0144] -continued $$P(Cy)_2$$ $$Pd_2(dba)_3$$ $$K_3PO_4(H_2O)$$ [0145] 2-([1,1'-Biphenyl]-3-yl)-5-bromo-4-methylpyridine 11.5 g (35.5 mmol), 2,4,6-trimethyl-1,3,5,2,4,6-trioxatriborinane (5.57 g, 44.3 mmol), dicyclohexyl(2',6'-dimethoxy-[1,1'-biphenyl]-3-yl)phosphine (1.2 g, 2.84 mmol), Pd_2dba_3 (0.650 g, 0.709 mmol) and potassium phosphate tribasic monohydrate, 250 mL toluene and 25 mL of water were placed in flask under nitrogen. The reaction mixture was degassed with nitrogen for 20 minutes and heated to reflux for 24 h. After cooling, the organic layer was separated and the aqueous layer extracted 3×50 mL with dichloromethane, dried over sodium sulfate and evaporated. The crude product was chromatographed on silica gel with 5% dichloromethane in hexane to give 8.0 g (87%) of the product. The product was confirmed by NMR and GC/MS. ## Example 8 [0146] [0147] To a round-bottom flask was added 1-(2,6-diisopropylphenyl)-2-phenyl-1H-imidazole (8.00 g, 26.3 mmol) and iridium(III) chloride hydrate (3.09 g, 8.76 mmol) with 2-ethoxyethanol (90 mL) and water (30 mL) under $\rm N_2$ atmosphere. The resulting reaction mixture was refluxed at 130° C. for 18 h. The green precipitate was filtered, washed with ethanol (3-4 times) and hexane (3-4 times) to yield 7.3 g (98.9%) of a green solid after drying. The product was used without further purification. pylcyclohexa-2,4-dien-1-yl)-2-phenyl-1H-benzo[d]imidazole (6.0 g, 16.83 mmol) and iridium(III) chloride hydrate (1.98 g, 5.61 mmol) with 2-ethoxyethanol (100 mL) and water (33 mL) under $\rm N_2$ atmosphere. The resulting reaction mixture was refluxed at 130° C. for 18 h. The yellow precipitate was filtered, washed with methanol (3-4 times) and hexane (3-4 times) to yield 5.2 g (98.8%) of a yellow solid after drying. The product was used without further purification. [0149] To a round-bottom flask was added 1-(2,6-diisopro- Example 9 Example 10 [0148] [0151] To a round-bottom flask was 2-([1, 1'-biphenyl]-3-yl)-4-methylpyridine (10 g, 40.8 mmol) and iridium(III) chloride hydrate (4.11 g, 11.66 mmol) with 2-ethoxyethanol (100 mL) and water (33 mL) under $\rm N_2$ atmosphere. The resulting reaction mixture was refluxed at 130° C. for 18 h. The yellow precipitate was filtered, washed with methanol (3-4 times) and hexane (3-4 times) to yield 10.5 g (63%) of a yellow solid after drying. The product was used without further purification. #### Example 11 [0152] [0153] To a round-bottom flask was added 2-([1,1'-biphenyl]-3-yl)-4,5-dimethylpyridine (6.5 g, 25.06 mmol) and iridium(III) chloride hydrate (2.95 g, 8.35 mmol) with 2-ethoxyethanol (100 mL) and water (33 mL) under $\rm N_2$ atmosphere. The resulting reaction mixture was refluxed at 130° C. for 18 h. The yellow precipitate was filtered, washed with methanol (3-4 times) and hexane (3-4 times) to yield 6.2 g (100%) of a yellow solid after drying. The product was used without further purification. #### Example 12 [0154] [0155] In a round-bottom flask, the iridium dimer complex obtained as in Example 8 (7.2 g, 4.3 mmol) was dissolved in 600 mL dichloromethane. In a separate flask, silver(I) triflate (2.4 g, 9.5 mmol) was dissolved in 300 mL of MeOH. This was added slowly to the dimer solution with continuous stirring at room temperature. The reaction mixture was stirred overnight in the dark, then filtered through a tightly packed Celite® bed to remove silver chloride precipitate. The solvent was removed under reduced pressure to give 9.6 g (100%) of a yellow-green solid and used without further purification. ## Example 13 [0156] [0157] In a round-bottom flask, the iridium dimer complex (5.2 g, 2.78 mmol) was dissolved in 200 mL dichloromethane. In a separate flask, silver(I) triflate (1.5 g, 5.84 mmol) was dissolved in 250 mL of MeOH. This was added slowly to the dimer solution with continuous stirring at room temperature. The reaction mixture was stirred overnight in the dark, then filtered through a tightly packed Celite® bed to remove silver chloride precipitate. The solvent was removed under reduced pressure to give 6.0 g (100%) of a brownish green solid and used without further purification. ## Example 14 [0158] [0159] In a round-bottom flask, the iridium dimer complex (10.5 g, 7.3 mmol) was dissolved in 600 mL dichloromethane. In a separate flask, silver(I) triflate (4.0 g, 15.4 mmol) was dissolved in 300 mL of MeOH. This was added slowly to the dimer solution with continuous stirring at room temperature. The reaction mixture was stirred overnight in the dark, then filtered through a tightly packed Celite® bed to remove silver chloride precipitate. The solvent was removed under reduced pressure to give 11.5 g (100%) of a brownish green solid and used without further purification. ## Example 15 [0160] **[0161]** In a round-bottom flask, the iridium dimer complex (6.2~g, 4.2~mmol) was dissolved in 600~mL dichloromethane. In a separate flask, silver(I) triflate (2.3~g, 8.8~mmol) was dissolved in 300~mL of MeOH. This was added slowly to the dimer solution with continuous stirring at room temperature. The reaction mixture was stirred overnight in the dark, then filtered through a tightly packed Celite® bed to remove silver chloride precipitate. The solvent was removed under reduced pressure to give 8.0~g~(100%) of a brownish green solid and used without further purification. ## Example 16 ## Synthesis of Compound A # [0162] [0163] To a flask was added the iridium triflate complex obtained as in Example 14 (2.5 g, 2.2 mmol) and 2-(dibenzo [b,d]furan-4-yl)-4,5-dimethylpyridine (1.6 g, 5.8 mmol), 25 mL EtOH and 25 mL MeOH. The reaction mixture was refluxed for 36 h, forming a yellow precipitate. The reaction mixture was cooled to room temperature, diluted with ethanol, Celite® was added and the mixture stirred for 10 min. The mixture was filtered on a small silica gel plug on a frit and washed with ethanol (3-4 times) and with hexane (3-4 times). The filtrate was discarded. The Celite®/silica plug was then washed with dichloromethane to dissolve the product. Half the volume of dichloromethane was removed under reduced pressure and hexane was added to precipitate the product, which was filtered and washed with hexane. The crude product was chromatographed on silica gel with 1/1 (v/v) dichloromethane/hexane and then sublimed to yield 1.0 g (30%) of product as a yellow solid. The product, Compound A, was confirmed by HPLC (99.7% pure) and LC/MS. #### Example 17 ## Synthesis of Compound B [0164] [0165] To a flask was added the iridium triflate complex obtained as in Example 13 (3.3 g, 3.0 mmol) and 2-([1,1'biphenyl]-3-yl)-4-methylpyridine (1.9 g 7.7 mmol), 25 mL EtOH and 25 mL MeOH. The reaction mixture was refluxed for 36 h, with a yellow precipitate forming. The reaction mixture was cooled to room temperature, diluted with ethanol, Celite® was added and the mixture stirred for 10 min. The mixture was filtered on a small silica gel plug on a frit and washed with ethanol (3-4 times) and with hexane (3-4 times). The filtrate was discarded. The Celite®/silica plug was
then washed with dichloromethane to dissolve the product. Half the volume of dichloromethane was removed under reduced pressure and hexane was added to precipitate the product, which was filtered and washed with hexane. The crude product was chromatographed on silica gel with 1/1 (v/v) dichloromethane/hexane and then sublimed to yield 1.0 g (30%) of product as a yellow solid. The product, Compound B, was confirmed by HPLC (99.6% pure) and LC/MS. ## Example 18 ## Synthesis of Compound C [0167] To a flask was added the iridium triflate complex obtained as in Example 13 (3.0 g, 2.7 mmol) and 2-([1,1'biphenyl]-3-yl)-4,5-dimethylpyridine (1.8 g, 7.0 mmol), 25 mL EtOH and 25 mL MeOH. The reaction mixture was refluxed for 36 h, with a yellow precipitate forming. The reaction mixture was cooled to room temperature, diluted with ethanol, Celite® was added and the mixture stirred for 10 min. The mixture was filtered on a small silica gel plug on a frit and washed with ethanol (3-4 times) and with hexane (3-4 times). The filtrate was discarded. The Celite®/silica plug was then washed with dichloromethane to dissolve the product. Half the volume of dichloromethane was removed under reduced pressure and hexane was added to precipitate the product, which was filtered and washed with hexane. The crude product was chromatographed on silica gel with 1/1 (v/v) dichloromethane/hexane and then sublimed to yield 1.0 g (32%) of product as a yellow solid. The product, Compound C, was confirmed by HPLC (99.6% pure) and LC/MS. [0169] To a flask was added the iridium triflate complex obtained as in Example 15 (1.8 g, 2.0 mmol) and 1-(2,6-diisopropylcyclohexa-2,4-dien-1-yl)-2-phenyl-1H-benzo[d] imidazole (1.8 g, 5.05 mmol), 25 mL EtOH and 25 mL MeOH. The reaction mixture was refluxed for 20 h, with a yellow precipitate forming. The reaction mixture was cooled to room temperature, diluted with ethanol, Celite® was added and the mixture stirred for 10 min. The mixture was filtered on a small silica gel plug on a frit and washed with ethanol (3-4 times) and with hexane (3-4 times). The filtrate was discarded. The Celite®/silica plug was then washed with dichloromethane to dissolve the product. Half the volume of dichloromethane was removed under reduced pressure and isopropanol was added to precipitate the product, which was filtered and washed with methanol and hexane. The crude product was chromatographed on silica gel with 1/1 (v/v) dichloromethane/hexane to yield 1.4 g of product as fac- and mer-isomers. The isomeric mixture was photoisomerized with 365 nm light in a Rayonet for 10 days to yield only the fac-isomer. This isomer was once again chromatographed on silica gel with 1/1 (v/v) dichloromethane/hexane and then sublimed to yield 0.6 g (30%) of product as a yellow solid. The product, Compound D, was confirmed by HPLC (99.2% pure) and LC/MS. #### Synthesis of Compound 2 #### Example 20 ## Synthesis of Compound 2 [0170] [0171] To a flask was added the iridium triflate complex obtained as in Example 12 (3.0 g, 3.0 mmol) and 2-(dibenzo [b,d]furan-4-yl)-4,5-dimethylpyridine (2.8 g, 10.4 mmol), 25 mL EtOH and 25 mL MeOH. The reaction mixture was refluxed for 36 h, with a yellow precipitate forming. The reaction mixture was cooled to room temperature, diluted with ethanol, celite was added and the mixture stirred for 10 min. The mixture was filtered on a small silica gel plug on a frit and washed with ethanol (3-4 times) and with hexane (3-4 times). The filtrate was discarded. The Celite®/silica plug was then washed with dichloromethane to dissolve the product. Half the volume of dichloromethane was removed under reduced pressure and hexane was added to precipitate the product, which was filtered and washed with hexane. The crude product was chromatographed on silica gel with 2/3 (v/v) dichloromethane/hexane and then sublimed to yield 0.55 g (17%) of product as a yellow solid. The product, Compound 2, was confirmed by HPLC (99.7% pure) and LC/MS ## Synthesis of Compound 81 and Compound 82 ### Example 21 ## Synthesis of Compound 81 [0173] To a flask was added the iridium triflate complex obtained as in Example 13 (2.5 g, 2.2 mmol) and 2-(dibenzo [b,d]furan-4-yl)pyridine (2.5 g, 10.2 mmol), 25 mL EtOH and 25 mL MeOH. The reaction mixture was refluxed for 20 h, with a yellow precipitate forming. The reaction mixture was cooled to room temperature, diluted with ethanol, Celite® was added and the mixture stirred for 10 min. The mixture was filtered on a small silica gel plug on a frit and washed with ethanol (3-4 times) and with hexane (3-4 times). The filtrate was discarded. The Celite®/silica plug was then washed with dichloromethane to dissolve the product. Half the volume of dichloromethane was removed under reduced pressure and isopropanol was added to precipitate the product, which was filtered and washed with methanol and hexane. The crude product was chromatographed on silica gel with 7/3 (v/v) dichloromethane/hexane and then sublimed to yield 1.1 g (43%) of product as a yellow solid. The product, Compound 81, was confirmed by HPLC (99.1% pure) and LC/MS. [0175] To a flask was added the iridium triflate complex obtained as in Example 13 (2.5 g, 2.2 mmol) and 2-(dibenzo [b,d]furan-4-yl)-4,5-dimethylpyridine (1.6 g, 5.8 mmol), 25 mL EtOH and 25 mL MeOH. The reaction mixture was refluxed for 36 h, with a yellow precipitate forming. The reaction mixture was cooled to room temperature, diluted with ethanol, Celite® was added and the mixture stirred for 10 min. The mixture was filtered on a small silica gel plug on a frit and washed with ethanol (3-4 times) and with hexane (3-4 times). The filtrate was discarded. The Celite®/silica plug was then washed with dichloromethane to dissolve the product. Half the volume of dichloromethane was removed under reduced pressure and hexane was added to precipitate the product, which was filtered and washed with hexane. The crude product was chromatographed on silica gel with 7/3 (v/v) dichloromethane/hexane and then sublimed to yield 0.9 g (34%) of product as a yellow solid. The product, Compound 82, was confirmed by HPLC (99.6% pure) and LC/MS. [0176] It is understood that the various embodiments described herein are by way of example only, and are not intended to limit the scope of the invention. For example, many of the materials and structures described herein may be substituted with other materials and structures without deviating from the spirit of the invention. The present invention as claimed may therefore include variations from the particular examples and preferred embodiments described herein, as will be apparent to one of skill in the art. It is understood that various theories as to why the invention works are not intended to be limiting. 1. A method of making a compound of formula: R₁ Formula III comprising reacting the condensation product of an aryl 1,2-diamine and an aryl aldehyde with manganese dioxide in a solvent; wherein R₁, R₂ and R₅ may represent mono-, di-, tri- or tetra-substitution; wherein R₁, R₂ and R₅ are each independently selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof; and wherein R_1 , R_2 and R_5 are optionally fused and may be further substituted. 2. The method of claim 1, wherein the condensation product comprises reacting an aryl 1,2-diamine of formula: Formula IV with an aryl aldehyde of formula: ho Formula V in the presence of phase transfer catalyst and solvent. - 3. The method of claim 2, wherein the phase transfer catalyst comprises 1-hexadecylpyridinium bromide. - **4**. The method of claim 1, wherein R_5 is aryl or substituted aryl. - 5. The method of claim 1, wherein R_5 is a 2,6-disubstituted aryl. - **6**. The method of claim **1**, wherein R_5 is alkyl. * * * * * | 专利名称(译) | 制备有机电致发光材料的方法 | | | |----------------|---|---------|------------| | 公开(公告)号 | US20140303370A1 | 公开(公告)日 | 2014-10-09 | | 申请号 | US14/310606 | 申请日 | 2014-06-20 | | [标]申请(专利权)人(译) | 环球展览公司 | | | | 申请(专利权)人(译) | 通用显示器公司 | | | | 当前申请(专利权)人(译) | 通用显示器公司 | | | | [标]发明人 | KOTTAS GREGG
XIA CHUANJUN
ELSHENAWY ZEINAB
ANSARI NASRIN | | | | 发明人 | KOTTAS, GREGG
XIA, CHUANJUN
ELSHENAWY, ZEINAB
ANSARI, NASRIN | | | | IPC分类号 | H01L51/00 | | | | CPC分类号 | H01L51/0085 H01L51/5016 C09K11/06 H05B33/14 C09K2211/1007 C07F15/0033 C09K2211/1044 C09K2211/1088 C09K2211/1092 C09K2211/185 C09K2211/1029 C07D235/18 | | | | 其他公开文献 | US9257658 | | | | 外部链接 | Espacenet USPTO | | | # 摘要(译) 提供了制备用于制备新型杂配铱络合物的配体的方法。该方法包括使芳基1,2-二胺和芳基醛的缩合产物与二氧化锰在溶剂中反应。使用配体产生的新型铱络合物是OLED器件中的有用化合物。